Chapter 14: Problem 40
Let \(R\) be a region in a plane that has a unit normal vector \(\mathbf{n}=\langle a, b, c\rangle\) and boundary \(C .\) Let \(\mathbf{F}=\langle b z, c x, a y\rangle\) a. Show that \(\nabla \times \mathbf{F}=\mathbf{n}\) b. Use Stokes' Theorem to show that $$\operatorname{area} \text { of } R=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$$ c. Consider the curve \(C\) given by \(\mathbf{r}=\langle 5 \sin t, 13 \cos t, 12 \sin t\rangle\) for \(0 \leq t \leq 2 \pi .\) Prove that \(C\) lies in a plane by showing that \(\mathbf{r} \times \mathbf{r}^{\prime}\) is constant for all \(t\) d. Use part (b) to find the area of the region enclosed by \(C\) in part (c). (Hint: Find the unit normal vector that is consistent with the orientation of \(C\).)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.