Chapter 14: Problem 25
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. A paddle wheel with its axis in the direction \langle 0,1,-1\rangle would not spin when put in the vector field $$ \mathbf{F}=\langle 1,1,2\rangle \times\langle x, y, z\rangle $$ b. Stokes' Theorem relates the flux of a vector field \(\mathbf{F}\) across a surface to the values of \(\mathbf{F}\) on the boundary of the surface. c. A vector field of the form \(\mathbf{F}=\langle a+f(x), b+g(y)\) \(c+h(z)\rangle,\) where \(a, b,\) and \(c\) are constants, has zero circulation on a closed curve. d. If a vector field has zero circulation on all simple closed smooth curves \(C\) in a region \(D,\) then \(\mathbf{F}\) is conservative on \(D\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.