Chapter 14: Problem 2
Interpret the volume integral in the Divergence Theorem.
Chapter 14: Problem 2
Interpret the volume integral in the Divergence Theorem.
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the following identities. Assume that \(\varphi\) is \(a\) differentiable scalar-valued function and \(\mathbf{F}\) and \(\mathbf{G}\) are differentiable vector fields, all defined on a region of \(\mathbb{R}^{3}\). $$\nabla \cdot(\varphi \mathbf{F})=\nabla \varphi \cdot \mathbf{F}+\varphi \nabla \cdot \mathbf{F} \quad \text { (Product Rule) }$$
For the following velocity fields, compute the curl, make a sketch of the curl, and interpret the curl. $$\mathbf{v}=\langle-2 z, 0,1\rangle$$
a. Prove that the rotation field \(\mathbf{F}=\frac{\langle-y, x\rangle}{|\mathbf{r}|^{p}},\) where \(\mathbf{r}=\langle x, y\rangle\) is not conservative for \(p \neq 2\) b. For \(p=2,\) show that \(\mathbf{F}\) is conservative on any region not containing the origin. c. Find a potential function for \(\mathbf{F}\) when \(p=2\)
Use Stokes' Theorem to write the circulation form of Green's Theorem in the \(y z\) -plane.
Prove the following identities. Assume that \(\varphi\) is \(a\) differentiable scalar-valued function and \(\mathbf{F}\) and \(\mathbf{G}\) are differentiable vector fields, all defined on a region of \(\mathbb{R}^{3}\). $$\nabla \times(\mathbf{F} \times \mathbf{G})=(\mathbf{G} \cdot \nabla) \mathbf{F}-\mathbf{G}(\nabla \cdot \mathbf{F})-(\mathbf{F} \cdot \nabla) \mathbf{G}+\mathbf{F}(\nabla \cdot \mathbf{G})$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.