Chapter 14: Problem 2
Explain the meaning of the integral \(\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S\) in Stokes' Theorem.
Chapter 14: Problem 2
Explain the meaning of the integral \(\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S\) in Stokes' Theorem.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general formula for the surface area of a cone with height \(h\) and base radius \(a\) (excluding the base).
The area of a region \(R\) in the plane, whose boundary is the closed curve \(C,\) may be computed using line integrals with the formula $$\text { area of } R=\int_{C} x d y=-\int_{C} y d x$$ These ideas reappear later in the chapter. Let \(R\) be the rectangle with vertices \((0,0),(a, 0),(0, b),\) and \((a, b),\) and let \(C\) be the boundary of \(R\) oriented counterclockwise. Use the formula \(A=\int_{C} x d y\) to verify that the area of the rectangle is \(a b.\)
Prove that for a real number \(p,\) with \(\mathbf{r}=\langle x, y, z\rangle, \nabla\left(\frac{1}{|\mathbf{r}|^{p}}\right)=\frac{-p \mathbf{r}}{|\mathbf{r}|^{p+2}}.\)
The rotation of a three-dimensional velocity field \(\mathbf{V}=\langle u, v, w\rangle\) is measured by the vorticity \(\omega=\nabla \times \mathbf{V} .\) If \(\omega=\mathbf{0}\) at all points in the domain, the flow is irrotational. a. Which of the following velocity fields is irrotational: \(\mathbf{V}=\langle 2,-3 y, 5 z\rangle\) or \(\mathbf{V}=\langle y, x-z,-y\rangle ?\) b. Recall that for a two-dimensional source-free flow \(\mathbf{V}=(u, v, 0),\) a stream function \(\psi(x, y)\) may be defined such that \(u=\psi_{y}\) and \(v=-\psi_{x} .\) For such a two-dimensional flow, let \(\zeta=\mathbf{k} \cdot \nabla \times \mathbf{V}\) be the \(\mathbf{k}\) -component of the vorticity. Show that \(\nabla^{2} \psi=\nabla \cdot \nabla \psi=-\zeta\). c. Consider the stream function \(\psi(x, y)=\sin x \sin y\) on the square region \(R=\\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \pi\\}\). Find the velocity components \(u\) and \(v\); then sketch the velocity field. d. For the stream function in part (c), find the vorticity function \(\zeta\) as defined in part (b). Plot several level curves of the vorticity function. Where on \(R\) is it a maximum? A minimum?
Within the cube \(\\{(x, y, z):|x| \leq 1,\) \(|y| \leq 1,|z| \leq 1\\},\) where does div \(\mathbf{F}\) have the greatest magnitude when \(\mathbf{F}=\left\langle x^{2}-y^{2}, x y^{2} z, 2 x z\right\rangle ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.