Chapter 14: Problem 1
How is a vector field \(\mathbf{F}=\langle f, g, h\rangle\) used to describe the motion of air at one instant in time?
Chapter 14: Problem 1
How is a vector field \(\mathbf{F}=\langle f, g, h\rangle\) used to describe the motion of air at one instant in time?
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose a solid object in \(\mathbb{R}^{3}\) has a temperature distribution given by \(T(x, y, z) .\) The heat flow vector field in the object is \(\mathbf{F}=-k \nabla T,\) where the conductivity \(k>0\) is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is \(\nabla \cdot \mathbf{F}=-k \nabla \cdot \nabla T=-k \nabla^{2} T\) (the Laplacian of \(T\)). Compute the heat flow vector field and its divergence for the following temperature distributions. $$T(x, y, z)=100 e^{-x^{2}+y^{2}+z^{2}}$$
Find a vector field \(\mathbf{F}\) with the given curl. In each case, is the vector field you found unique? $$\operatorname{curl} \mathbf{F}=\langle 0,1,0\rangle$$
Prove the following identities. Assume that \(\varphi\) is \(a\) differentiable scalar-valued function and \(\mathbf{F}\) and \(\mathbf{G}\) are differentiable vector fields, all defined on a region of \(\mathbb{R}^{3}\). $$\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G})$$
Begin with the paraboloid \(z=x^{2}+y^{2},\) for \(0 \leq z \leq 4,\) and slice it with the plane \(y=0\) Let \(S\) be the surface that remains for \(y \geq 0\) (including the planar surface in the \(x z\) -plane) (see figure). Let \(C\) be the semicircle and line segment that bound the cap of \(S\) in the plane \(z=4\) with counterclockwise orientation. Let \(\mathbf{F}=\langle 2 z+y, 2 x+z, 2 y+x\rangle\) a. Describe the direction of the vectors normal to the surface that are consistent with the orientation of \(C\). b. Evaluate \(\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S\) c. Evaluate \(\oint_{C} \mathbf{F} \cdot d \mathbf{r}\) and check for agreement with part (b).
One of Maxwell's equations for electromagnetic waves is \(\nabla \times \mathbf{B}=C \frac{\partial \mathbf{E}}{\partial t},\) where \(\mathbf{E}\) is the electric field, \(\mathbf{B}\) is the magnetic field, and \(C\) is a constant. a. Show that the fields $$\mathbf{E}(z, t)=A \sin (k z-\omega t) \mathbf{i} \quad \mathbf{B}(z, t)=A \sin (k z-\omega t) \mathbf{j}$$ satisfy the equation for constants \(A, k,\) and \(\omega,\) provided \(\omega=k / C\). b. Make a rough sketch showing the directions of \(\mathbf{E}\) and \(\mathbf{B}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.