a. Let \(\mathbf{a}=\langle 0,1,0\rangle, \mathbf{r}=\langle x, y, z\rangle,\)
and consider the rotation field \(\mathbf{F}=\mathbf{a} \times \mathbf{r} .\)
Use the right-hand rule for cross products to find the direction of
\(\mathbf{F}\) at the points (0,1,1),(1,1,0),(0,1,-1), and (-1,1,0).
b. With \(\mathbf{a}=\langle 0,1,0\rangle,\) explain why the rotation field
\(\mathbf{F}=\mathbf{a} \times \mathbf{r}\) circles the \(y\) -axis in the
counterclockwise direction looking along a from head to tail (that is, in the
negative \(y\) -direction).