Chapter 14: Problem 1
Give a parametric description for a cylinder with radius \(a\) and height \(h,\) including the intervals for the parameters.
Chapter 14: Problem 1
Give a parametric description for a cylinder with radius \(a\) and height \(h,\) including the intervals for the parameters.
All the tools & learning materials you need for study success - in one app.
Get started for freeA square plate \(R=\\{(x, y): 0 \leq x \leq 1,\) \(0 \leq y \leq 1\\}\) has a temperature distribution \(T(x, y)=100-50 x-25 y\) a. Sketch two level curves of the temperature in the plate. b. Find the gradient of the temperature \(\nabla T(x, y)\) c. Assume that the flow of heat is given by the vector field \(\mathbf{F}=-\nabla T(x, y) .\) Compute \(\mathbf{F}\) d. Find the outward heat flux across the boundary \(\\{(x, y): x=1,0 \leq y \leq 1\\}\) e. Find the outward heat flux across the boundary \(\\{(x, y): 0 \leq x \leq 1, y=1\\}\)
Prove the following properties of the divergence and curl. Assume \(\mathbf{F}\) and \(\mathbf{G}\) are differentiable vector fields and \(c\) is a real number. a. \(\nabla \cdot(\mathbf{F}+\mathbf{G})=\nabla \cdot \mathbf{F}+\nabla \cdot \mathbf{G}\) b. \(\nabla \times(\mathbf{F}+\mathbf{G})=(\nabla \times \mathbf{F})+(\nabla \times \mathbf{G})\) c. \(\nabla \cdot(c \mathbf{F})=c(\nabla \cdot \mathbf{F})\) d. \(\nabla \times(c \mathbf{F})=c(\nabla \times \mathbf{F})\)
The potential function for the force field due to a charge \(q\) at the origin is \(\varphi=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{|\mathbf{r}|},\) where \(\mathbf{r}=\langle x, y, z\rangle\) is the position vector of a point in the field and \(\varepsilon_{0}\) is the permittivity of free space. a. Compute the force field \(\mathbf{F}=-\nabla \varphi\). b. Show that the field is irrotational; that is \(\nabla \times \mathbf{F}=\mathbf{0}\).
Prove the following identities. Assume that \(\varphi\) is \(a\) differentiable scalar-valued function and \(\mathbf{F}\) and \(\mathbf{G}\) are differentiable vector fields, all defined on a region of \(\mathbb{R}^{3}\). $$\nabla \times(\varphi \mathbf{F})=(\nabla \varphi \times \mathbf{F})+(\varphi \nabla \times \mathbf{F}) \quad \text { (Product Rule) }$$
Prove that for a real number \(p,\) with \(\mathbf{r}=\langle x, y, z\rangle, \nabla\left(\frac{1}{|\mathbf{r}|^{p}}\right)=\frac{-p \mathbf{r}}{|\mathbf{r}|^{p+2}}.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.