Chapter 14: Problem 1
Explain why the two forms of Green's Theorem are analogs of the Fundamental Theorem of Calculus.
Chapter 14: Problem 1
Explain why the two forms of Green's Theorem are analogs of the Fundamental Theorem of Calculus.
All the tools & learning materials you need for study success - in one app.
Get started for freeFor what vectors \(\mathbf{n}\) is \((\operatorname{curl} \mathbf{F}) \cdot \mathbf{n}=0\) when \(\mathbf{F}=\langle y,-2 z,-x\rangle ?\)
Find the work required to move an object in the following force fields along a line segment between the given points. Check to see whether the force is conservative. $$\mathbf{F}=\langle x, y, z\rangle \text { from } A(1,2,1) \text { to } B(2,4,6)$$
The Navier-Stokes equation is the fundamental equation of fluid dynamics that models the flow in everything from bathtubs to oceans. In one of its many forms (incompressible, viscous flow), the equation is $$\rho\left(\frac{\partial \mathbf{V}}{\partial t}+(\mathbf{V} \cdot \nabla) \mathbf{V}\right)=-\nabla p+\mu(\nabla \cdot \nabla) \mathbf{V}.$$ In this notation, \(\mathbf{V}=\langle u, v, w\rangle\) is the three-dimensional velocity field, \(p\) is the (scalar) pressure, \(\rho\) is the constant density of the fluid, and \(\mu\) is the constant viscosity. Write out the three component equations of this vector equation. (See Exercise 40 for an interpretation of the operations.)
Consider the radial field \(\mathbf{F}=\mathbf{r} /|\mathbf{r}|^{p}\) where \(\mathbf{r}=\langle x, y, z\rangle\) and \(p\) is a real number. Let \(S\) be the sphere of radius \(a\) centered at the origin. Show that the outward flux of \(\mathbf{F}\) across the sphere is \(4 \pi / a^{p-3} .\) It is instructive to do the calculation using both an explicit and parametric description of the sphere.
Consider the radial field \(\mathbf{F}=\frac{\mathbf{r}}{|\mathbf{r}|^{p}}=\frac{\langle x, y, z\rangle}{|\mathbf{r}|^{p}},\) where \(p>1\) (the inverse square law corresponds to \(p=3\) ). Let \(C\) be the line from (1,1,1) to \((a, a, a),\) where \(a>1,\) given by \(\mathbf{r}(t)=\langle t, t, t\rangle,\) for \(1 \leq t \leq a\) a. Find the work done in moving an object along \(C\) with \(p=2\) b. If \(a \rightarrow \infty\) in part (a), is the work finite? c. Find the work done in moving an object moving along \(C\) with \(p=4.\) d. If \(a \rightarrow \infty\) in part (c), is the work finite? e. Find the work done in moving an object moving along \(C\) for any \(p>1\) f. If \(a \rightarrow \infty\) in part (e), for what values of \(p\) is the work finite?
What do you think about this solution?
We value your feedback to improve our textbook solutions.