Chapter 14: Problem 1
Explain the meaning of the integral \(\oint_{C} \mathbf{F} \cdot d \mathbf{r}\) in Stokes' Theorem.
Chapter 14: Problem 1
Explain the meaning of the integral \(\oint_{C} \mathbf{F} \cdot d \mathbf{r}\) in Stokes' Theorem.
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the following properties of the divergence and curl. Assume \(\mathbf{F}\) and \(\mathbf{G}\) are differentiable vector fields and \(c\) is a real number. a. \(\nabla \cdot(\mathbf{F}+\mathbf{G})=\nabla \cdot \mathbf{F}+\nabla \cdot \mathbf{G}\) b. \(\nabla \times(\mathbf{F}+\mathbf{G})=(\nabla \times \mathbf{F})+(\nabla \times \mathbf{G})\) c. \(\nabla \cdot(c \mathbf{F})=c(\nabla \cdot \mathbf{F})\) d. \(\nabla \times(c \mathbf{F})=c(\nabla \times \mathbf{F})\)
The cone \(z^{2}=x^{2}+y^{2},\) for \(z \geq 0,\) cuts the sphere \(x^{2}+y^{2}+z^{2}=16\) along a curve \(C\) a. Find the surface area of the sphere below \(C,\) for \(z \geq 0\). b. Find the surface area of the sphere above \(C\). c. Find the surface area of the cone below \(C,\) for \(z \geq 0\).
Let S be the disk enclosed by the curve \(C: \mathbf{r}(t)=\langle\cos \varphi \cos t, \sin t, \sin \varphi \cos t\rangle,\)for \(0 \leq t \leq 2 \pi,\) where \(0 \leq \varphi \leq \pi / 2\) is a fixed angle. Use Stokes' Theorem and a surface integral to find the circulation on \(C\) of the vector field \(\mathbf{F}=\langle-y, x, 0\rangle\) as a function of \(\varphi .\) For what value of \(\varphi\) is the circulation a maximum?
Let \(S\) be the cylinder \(x^{2}+y^{2}=a^{2},\) for \(-L \leq z \leq L\) a. Find the outward flux of the field \(\mathbf{F}=\langle x, y, 0\rangle\) across \(S\) b. Find the outward flux of the field \(\mathbf{F}=\frac{\langle x, y, 0\rangle}{\left(x^{2}+y^{2}\right)^{p / 2}}=\frac{\mathbf{r}}{|\mathbf{r}|^{p}}\) across \(S,\) where \(|\mathbf{r}|\) is the distance from the \(z\) -axis and \(p\) is a real number. c. In part (b), for what values of \(p\) is the outward flux finite as \(a \rightarrow \infty\) (with \(L\) fixed)? d. In part (b), for what values of \(p\) is the outward flux finite as \(L \rightarrow \infty\) (with \(a\) fixed)?
Suppose a solid object in \(\mathbb{R}^{3}\) has a temperature distribution given by \(T(x, y, z) .\) The heat flow vector field in the object is \(\mathbf{F}=-k \nabla T,\) where the conductivity \(k>0\) is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is \(\nabla \cdot \mathbf{F}=-k \nabla \cdot \nabla T=-k \nabla^{2} T\) (the Laplacian of \(T\)). Compute the heat flow vector field and its divergence for the following temperature distributions. $$T(x, y, z)=100(1+\sqrt{x^{2}+y^{2}+z^{2}})$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.