Chapter 14: Problem 1
Explain how to compute the divergence of the vector field \(\mathbf{F}=\langle f, g, h\rangle\).
Chapter 14: Problem 1
Explain how to compute the divergence of the vector field \(\mathbf{F}=\langle f, g, h\rangle\).
All the tools & learning materials you need for study success - in one app.
Get started for freeThe goal is to evaluate \(A=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S,\) where \(\mathbf{F}=\langle y z,-x z, x y\rangle\) and \(S\) is the surface of the upper half of the ellipsoid \(x^{2}+y^{2}+8 z^{2}=1(z \geq 0)\) a. Evaluate a surface integral over a more convenient surface to find the value of \(A\) b. Evaluate \(A\) using a line integral.
The heat flow vector field for conducting objects is \(\mathbf{F}=-k \nabla T,\) where \(T(x, y, z)\) is the temperature in the object and \(k>0\) is a constant that depends on the material. Compute the outward flux of \(\mathbf{F}\) across the following surfaces S for the given temperature distributions. Assume \(k=1\). \(T(x, y, z)=-\ln \left(x^{2}+y^{2}+z^{2}\right) ; S\) is the sphere \(x^{2}+y^{2}+z^{2}=a^{2}\).
Consider the rotational velocity field \(\mathbf{v}=\mathbf{a} \times \mathbf{r},\) where \(\mathbf{a}\) is a nonzero constant vector and \(\mathbf{r}=\langle x, y, z\rangle .\) Use the fact that an object moving in a circular path of radius \(R\) with speed \(|\mathbf{v}|\) has an angular speed of \(\omega=|\mathbf{v}| / R\). a. Sketch a position vector a, which is the axis of rotation for the vector field, and a position vector \(\mathbf{r}\) of a point \(P\) in \(\mathbb{R}^{3}\). Let \(\theta\) be the angle between the two vectors. Show that the perpendicular distance from \(P\) to the axis of rotation is \(R=|\mathbf{r}| \sin \theta\). b. Show that the speed of a particle in the velocity field is \(|\mathbf{a} \times \mathbf{r}|\) and that the angular speed of the object is \(|\mathbf{a}|\). c. Conclude that \(\omega=\frac{1}{2}|\nabla \times \mathbf{v}|\).
Use Stokes' Theorem to find the circulation of the following vector fields around any simple closed smooth curve \(C\). $$\mathbf{F}=\langle 2 x,-2 y, 2 z\rangle$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.