Sketch the region
Begin by sketching the region. The curves intersect when \(1+\sin x = 1-\sin x\). Solving for \(x\), we get \(\sin x = 0\) and hence, \(x = 0, \pi\). So, the region we are interested in is as shown below:
[asy]
size(280);
import graph; usepackage("amsmath");
real min = 0; real max = pi;
real up(real x) {return 1+sin(x);}
real down(real x) {return 1-sin(x);}
draw(graph(up,min,max)^^graph(down,min,max), linewidth(1));
draw((min,0)--(max,0),EndArrow);
draw((0,-1)--(0,3),EndArrow);
label("\(x\)",(max,0),E);
label("\(y\)",(0,3),N);
fill(graph(up,min,max)--graph(down,max,min)--cycle, rgb(0.9,0.9,0.9));
[/asy]
We can split this region into two regions A and B (symmetric about the x-axis) and just find the area of region A and multiply the result by two:
[asy]
size(280);
import graph; usepackage("amsmath");
real min = 0; real max = pi;
real up(real x) {return 1+sin(x);}
real down(real x) {return 1-sin(x);}
draw(graph(up,min,max)^^graph(down,min,max), linewidth(1));
draw((min,0)--(max,0),EndArrow);
draw((0,-1)--(0,3),EndArrow);
label("\(x\)",(max,0),E);
label("\(y\)",(0,3),N);
fill(graph(up,min,max)--(pi,1)--cycle, rgb(0.9,0.9,0.9));
label("\(A\)",(pi/2,1),NE);
[/asy]