Chapter 13: Problem 75
Gravitational field due to spherical shell A point mass \(m\) is a distance \(d\)
from the center of a thin spherical shell of mass \(M\) and radius \(R .\) The
magnitude of the gravitational force on the point mass is given by the
integral
$$F(d)=\frac{G M m}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{(d-R \cos
\varphi) \sin \varphi}{\left(R^{2}+d^{2}-2 R d \cos \varphi\right)^{3 / 2}} d
\varphi d \theta$$
where \(G\) is the gravitational constant.
a. Use the change of variable \(x=\cos \varphi\) to evaluate the integral and
show that if \(d>R,\) then \(F(d)=\frac{G M m}{d^{2}},\) which means the force is
the same as if the mass of the shell were concentrated
at its center.
b. Show that if \(d
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.