Chapter 13: Problem 7
Sketch the following systems on a number line and find the location of the center of mass. $$m_{1}=10 \mathrm{kg} \text { located at } x=3 \mathrm{m} ; m_{2}=3 \mathrm{kg} \text { located at } x=-1 \mathrm{m}$$
Chapter 13: Problem 7
Sketch the following systems on a number line and find the location of the center of mass. $$m_{1}=10 \mathrm{kg} \text { located at } x=3 \mathrm{m} ; m_{2}=3 \mathrm{kg} \text { located at } x=-1 \mathrm{m}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe limaçon \(r=b+a \cos \theta\) has an inner loop if \(b a\). a. Find the area of the region bounded by the limaçon \(r=2+\cos \theta\) b. Find the area of the region outside the inner loop and inside the outer loop of the limaçon \(r=1+2 \cos \theta\) c. Find the area of the region inside the inner loop of the limaçon $r=1+2 \cos \theta$
Let \(D\) be the solid bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a>0, b>0,\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=\)au, \(y=b v, z=c w\) Find the volume of \(D\)
Improper integrals arise in polar coordinates when the radial coordinate \(r\) becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: $$\int_{\alpha}^{\beta} \int_{a}^{\infty} f(r, \theta) r d r d \theta=\lim _{b \rightarrow \infty} \int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta$$ Use this technique to evaluate the following integrals. $$\int_{0}^{\pi / 2} \int_{1}^{\infty} \frac{\cos \theta}{r^{3}} r d r d \theta$$
Parabolic coordinates Let \(T\) be the transformation \(x=u^{2}-v^{2}\) \(y=2 u v\) a. Show that the lines \(u=a\) in the \(u v\) -plane map to parabolas in the \(x y\) -plane that open in the negative \(x\) -direction with vertices on the positive \(x\) -axis. b. Show that the lines \(v=b\) in the \(u v\) -plane map to parabolas in the \(x y\) -plane that open in the positive \(x\) -direction with vertices on the negative \(x\) -axis. c. Evaluate \(J(u, v)\) d. Use a change of variables to find the area of the region bounded by \(x=4-y^{2} / 16\) and \(x=y^{2} / 4-1\) e. Use a change of variables to find the area of the curved rectangle above the \(x\) -axis bounded by \(x=4-y^{2} / 16\) \(x=9-y^{2} / 36, x=y^{2} / 4-1,\) and \(x=y^{2} / 64-16\) f. Describe the effect of the transformation \(x=2 u v\) \(y=u^{2}-v^{2}\) on horizontal and vertical lines in the \(u v\) -plane.
Use spherical coordinates to find the volume of the following solids. A ball of radius \(a>0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.