Chapter 13: Problem 68
Let \(f\) be a continuous function on \([0,1] .\) Prove that $$\int_{0}^{1} \int_{x}^{1} \int_{x}^{y} f(x) f(y) f(z) d z d y d x=\frac{1}{6}\left(\int_{0}^{1} f(x) d x\right)^{3}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.