Chapter 13: Problem 66
The occurrence of random events (such as phone calls or e-mail messages) is often idealized using an exponential distribution. If \(\lambda\) is the average rate of occurrence of such an event, assumed to be constant over time, then the average time between occurrences is \(\lambda^{-1}\) (for example, if phone calls arrive at a rate of \(\lambda=2 /\) min, then the mean time between phone calls is \(\lambda^{-1}=\frac{1}{2} \mathrm{min}\) ). The exponential distribution is given by \(f(t)=\lambda e^{-\lambda t},\) for \(0 \leq t<\infty\) a. Suppose you work at a customer service desk and phone calls arrive at an average rate of \(\lambda_{1}=0.8 /\) min (meaning the average time between phone calls is \(1 / 0.8=1.25 \mathrm{min}\) ). The probability that a phone call arrives during the interval \([0, T]\) is \(p(T)=\int_{0}^{T} \lambda_{1} e^{-\lambda_{1} t} d t .\) Find the probability that a phone call arrives during the first 45 s \((0.75\) min) that you work at the desk. b. Now suppose that walk-in customers also arrive at your desk at an average rate of \(\lambda_{2}=0.1 /\) min. The probability that a phone $$p(T)=\int_{0}^{T} \int_{0}^{T} \lambda_{1} e^{-\lambda_{1} t} \lambda_{2} e^{-\lambda_{2} x} d t d s$$ Find the probability that a phone call and a customer arrive during the first 45 s that you work at the desk. c. E-mail messages also arrive at your desk at an average rate of \(\lambda_{3}=0.05 /\) min. The probability that a phone call and a customer and an e-mail message arrive during the interval \([0, T]\) is $$p(T)=\int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \lambda_{1} e^{-\lambda_{1} t} \lambda_{2} e^{-\lambda_{2} s} \lambda_{3} e^{-\lambda_{3} u} d t d s d u$$ Find the probability that a phone call and a customer and an e-mail message arrive during the first 45 s that you work at the desk.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.