Chapter 13: Problem 63
Improper integrals arise in polar coordinates when the radial coordinate \(r\) becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: $$\int_{\alpha}^{\beta} \int_{a}^{\infty} f(r, \theta) r d r d \theta=\lim _{b \rightarrow \infty} \int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta$$ Use this technique to evaluate the following integrals. $$\int_{0}^{\pi / 2} \int_{1}^{\infty} \frac{\cos \theta}{r^{3}} r d r d \theta$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.