Chapter 13: Problem 61
Consider the thin constant-density plate \(\\{(r, \theta): 0
Chapter 13: Problem 61
Consider the thin constant-density plate \(\\{(r, \theta): 0
All the tools & learning materials you need for study success - in one app.
Get started for freeMass from density Find the mass of the following solids with the given density functions. Note that density is described by the function \(f\) to avoid confusion with the radial spherical coordinate \(\rho\). The solid cone \(\\{(r, \theta, z): 0 \leq z \leq 4,0 \leq r \leq \sqrt{3} z\) \(0 \leq \theta \leq 2 \pi\\}\) with a density \(f(r, \theta, z)=5-z\)
Changing order of integration If possible, write iterated integrals in cylindrical coordinates for the following regions in the specified orders. Sketch the region of integration. The solid outside the cylinder \(r=1\) and inside the sphere \(\rho=5\) for \(z \geq 0,\) in the orders \(d z d r d \theta, d r d z d \theta,\) and \(d \theta d z d r\)
A cake is shaped like a hemisphere of radius 4 with its base on the \(x y\) -plane. A wedge of the cake is removed by making two slices from the center of the cake outward, perpendicular to the \(x y\) -plane and separated by an angle of \(\varphi\) a. Use a double integral to find the volume of the slice for \(\varphi=\pi / 4 .\) Use geometry to check your answer. b. Now suppose the cake is sliced by a plane perpendicular to the \(x y\) -plane at \(x=a > 0 .\) Let \(D\) be the smaller of the two pieces produced. For what value of \(a\) is the volume of \(D\) equal to the volume in part (a)?
Consider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A tetrahedron is bounded by the coordinate planes and the plane \(x / a+y / a+z / a=1 .\) What are the coordinates of the center of mass?
Let \(D\) be the solid bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a>0, b>0,\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=\)au, \(y=b v, z=c w\) Evaluate \(\iiint_{D}|x y z| d A\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.