Chapter 13: Problem 59
Reverse the order of integration in the following integrals. $$\int_{1 / 2}^{1} \int_{0}^{-\ln y} f(x, y) d x d y$$
Chapter 13: Problem 59
Reverse the order of integration in the following integrals. $$\int_{1 / 2}^{1} \int_{0}^{-\ln y} f(x, y) d x d y$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the coordinates of the center of mass of the following solids with variable density. The interior of the prism formed by \(z=x, x=1, y=4,\) and the coordinate planes with \(\rho(x, y, z)=2+y\)
Use spherical coordinates to find the volume of the following solids. The solid cardioid of revolution \(D=\\{(\rho, \varphi, \theta): 0 \leq \rho \leq 1+\cos \varphi, 0 \leq \varphi \leq \pi, 0 \leq \theta \leq 2 \pi\\}\)
Use a change of variables to evaluate the following integrals. \(\iiint_{D} d V ; D\) is bounded by the upper half of the ellipsoid \(x^{2} / 9+y^{2} / 4+z^{2}=1\) and the \(x y\) -plane. Use \(x=3 u\) \(y=2 v, z=w\)
Let \(D\) be the solid bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a>0, b>0,\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=\)au, \(y=b v, z=c w\) Evaluate \(\iiint_{D}|x y z| d A\)
An important integral in statistics associated with the normal distribution is \(I=\int_{-\infty}^{\infty} e^{-x^{2}} d x .\) It is evaluated in the following steps. a. Assume that $$\begin{aligned} I^{2} &=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) \\ &=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y \end{aligned}$$ where we have chosen the variables of integration to be \(x\) and \(y\) and then written the product as an iterated integral. Evaluate this integral in polar coordinates and show that \(I=\sqrt{\pi} .\) Why is the solution \(I=-\sqrt{\pi}\) rejected? b. Evaluate \(\int_{0}^{\infty} e^{-x^{2}} d x, \int_{0}^{\infty} x e^{-x^{2}} d x,\) and \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x\) (using part (a) if needed).
What do you think about this solution?
We value your feedback to improve our textbook solutions.