Chapter 13: Problem 54
Use double integrals to calculate the volume of the following regions. The solid in the first octant bounded by the coordinate planes and the surface \(z=1-y-x^{2}\)
Chapter 13: Problem 54
Use double integrals to calculate the volume of the following regions. The solid in the first octant bounded by the coordinate planes and the surface \(z=1-y-x^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeMiscellaneous volumes Choose the best coordinate system for finding the volume of the following solids. Surfaces are specified using the coordinates that give the simplest description, but the simplest integration may be with respect to different variables. Volume of a drilled hemisphere Find the volume of material remaining in a hemisphere of radius 2 after a cylindrical hole of radius 1 is drilled through the center of the hemisphere perpendicular to its base.
In polar coordinates an equation of an ellipse with eccentricity \(0 < e < 1\) and semimajor axis \(a\) is \(r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta}\) a. Write the integral that gives the area of the ellipse. b. Show that the area of an ellipse is \(\pi a b,\) where \(b^{2}=a^{2}\left(1-e^{2}\right)\)
Linear transformations Consider the linear transformation \(T\) in \(\mathbb{R}^{2}\) given by \(x=a u+b v, y=c u+d v,\) where \(a, b, c,\) and \(d\) are real numbers, with \(a d \neq b c\) a. Find the Jacobian of \(T\) b. Let \(S\) be the square in the \(u v\) -plane with vertices (0,0) \((1,0),(0,1),\) and \((1,1),\) and let \(R=T(S) .\) Show that \(\operatorname{area}(R)=|J(u, v)|\) c. Let \(\ell\) be the line segment joining the points \(P\) and \(Q\) in the uv- plane. Show that \(T(\ell)\) (the image of \(\ell\) under \(T\) ) is the line segment joining \(T(P)\) and \(T(Q)\) in the \(x y\) -plane. (Hint: Use vectors.) d. Show that if \(S\) is a parallelogram in the \(u v\) -plane and \(R=T(S),\) then \(\operatorname{area}(R)=|J(u, v)| \operatorname{area}(S) .\) (Hint: Without loss of generality, assume the vertices of \(S\) are \((0,0),(A, 0)\) \((B, C),\) and \((A+B, C),\) where \(A, B,\) and \(C\) are positive, and use vectors.)
Changing order of integration If possible, write iterated integrals in cylindrical coordinates for the following regions in the specified orders. Sketch the region of integration. The solid above the cone \(z=r\) and below the sphere \(\rho=2,\) for \(z \geq 0,\) in the orders \(d z d r d \theta, d r d z d \theta,\) and \(d \theta d z d r\)
Consider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A tetrahedron is bounded by the coordinate planes and the plane \(x / a+y / a+z / a=1 .\) What are the coordinates of the center of mass?
What do you think about this solution?
We value your feedback to improve our textbook solutions.