Chapter 13: Problem 50
Use polar coordinates to find the centroid of the following constant-density plane regions. The region bounded by the limaçon \(r=2+\cos \theta\)
Chapter 13: Problem 50
Use polar coordinates to find the centroid of the following constant-density plane regions. The region bounded by the limaçon \(r=2+\cos \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(A\) thin rod of length \(L\) has a linear density given by \(\rho(x)=2 e^{-x / 3}\) on the interval \(0 \leq x \leq L\). Find the mass and center of mass of the rod. How does the center of mass change as \(L \rightarrow \infty ?\)
Open and closed boxes Consider the region \(R\) bounded by three pairs of parallel planes: \(a x+b y=0, a x+b y=1\) \(c x+d z=0, c x+d z=1, e y+f z=0,\) and \(e y+f z=1\) where \(a, b, c, d, e,\) and \(f\) are real numbers. For the purposes of evaluating triple integrals, when do these six planes bound a finite region? Carry out the following steps. a. Find three vectors \(\mathbf{n}_{1}, \mathbf{n}_{2},\) and \(\mathbf{n}_{3}\) each of which is normal to one of the three pairs of planes. b. Show that the three normal vectors lie in a plane if their triple scalar product \(\mathbf{n}_{1} \cdot\left(\mathbf{n}_{2} \times \mathbf{n}_{3}\right)\) is zero. c. Show that the three normal vectors lie in a plane if ade \(+b c f=0\) d. Assuming \(\mathbf{n}_{1}, \mathbf{n}_{2},\) and \(\mathbf{n}_{3}\) lie in a plane \(P,\) find a vector \(\mathbf{N}\) that is normal to \(P .\) Explain why a line in the direction of \(\mathbf{N}\) does not intersect any of the six planes and therefore the six planes do not form a bounded region. e. Consider the change of variables \(u=a x+b y, v=c x+d z\) \(w=e y+f z .\) Show that $$J(x, y, z)=\frac{\partial(u, v, w)}{\partial(x, y, z)}=-a d e-b c f$$ What is the value of the Jacobian if \(R\) is unbounded?
Intersecting spheres One sphere is centered at the origin and has a radius of \(R\). Another sphere is centered at \((0,0, r)\) and has a radius of \(r,\) where \(r>R / 2 .\) What is the volume of the region common to the two spheres?
Miscellaneous volumes Choose the best coordinate system for finding the volume of the following solids. Surfaces are specified using the coordinates that give the simplest description, but the simplest integration may be with respect to different variables. The solid inside the sphere \(\rho=1\) and below the cone \(\varphi=\pi / 4\) for \(z \geq 0\)
Use a change of variables to evaluate the following integrals. \(\iiint_{D} d V ; D\) is bounded by the upper half of the ellipsoid \(x^{2} / 9+y^{2} / 4+z^{2}=1\) and the \(x y\) -plane. Use \(x=3 u\) \(y=2 v, z=w\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.