Chapter 13: Problem 5
Explain why \(d z r d r d \theta\) is the volume of a small "box" in cylindrical coordinates.
Chapter 13: Problem 5
Explain why \(d z r d r d \theta\) is the volume of a small "box" in cylindrical coordinates.
All the tools & learning materials you need for study success - in one app.
Get started for freeMiscellaneous volumes Choose the best coordinate system for finding the volume of the following solids. Surfaces are specified using the coordinates that give the simplest description, but the simplest integration may be with respect to different variables. That part of the solid cylinder \(r \leq 2\) that lies between the cones \(\varphi=\pi / 3\) and \(\varphi=2 \pi / 3\)
Explain why or why not ,Determine whether the following statements are true and give an explanation or counterexample. a. A thin plate of constant density that is symmetric about the \(x\) -axis has a center of mass with an \(x\) -coordinate of zero. b. A thin plate of constant density that is symmetric about both the \(x\) -axis and the \(y\) -axis has its center of mass at the origin. c. The center of mass of a thin plate must lie on the plate. d. The center of mass of a connected solid region (all in one piece) must lie within the region.
Evaluate the following integrals in spherical coordinates. $$\int_{0}^{\pi} \int_{0}^{\pi / 6} \int_{2 \sec \varphi}^{4} \rho^{2} \sin \varphi d \rho d \varphi d \theta$$
Let \(f\) be a continuous function on \([0,1] .\) Prove that $$\int_{0}^{1} \int_{x}^{1} \int_{x}^{y} f(x) f(y) f(z) d z d y d x=\frac{1}{6}\left(\int_{0}^{1} f(x) d x\right)^{3}$$
General volume formulas Use integration to find the volume of the following solids. In each case, choose a convenient coordinate system, find equations for the bounding surfaces, set up a triple integral, and evaluate the integral. Assume that \(a, b, c, r, R,\) and \(h\) are positive constants. Spherical cap Find the volume of the cap of a sphere of radius \(R\) with thickness \(h\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.