Chapter 13: Problem 48
Use polar coordinates to find the centroid of the following constant-density plane regions. The region bounded by the cardioid \(r=3-3 \cos \theta\)
Chapter 13: Problem 48
Use polar coordinates to find the centroid of the following constant-density plane regions. The region bounded by the cardioid \(r=3-3 \cos \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(R\) be the region bounded by the ellipse \(x^{2} / a^{2}+y^{2} / b^{2}=1,\) where \(a>0\) and \(b>0\) are real numbers. Let \(T\) be the transformation \(x=a u, y=b v\) Evaluate \(\iint_{R}|x y| d A\)
Density distribution A right circular cylinder with height \(8 \mathrm{cm}\) and radius \(2 \mathrm{cm}\) is filled with water. A heated filament running along its axis produces a variable density in the water given by \(\rho(r)=1-0.05 e^{-0.01 r^{2}} \mathrm{g} / \mathrm{cm}^{3}(\rho\) stands for density here, not the radial spherical coordinate). Find the mass of the water in the cylinder. Neglect the volume of the filament.
\(A\) thin rod of length \(L\) has a linear density given by \(\rho(x)=2 e^{-x / 3}\) on the interval \(0 \leq x \leq L\). Find the mass and center of mass of the rod. How does the center of mass change as \(L \rightarrow \infty ?\)
\(A\) thin plate is bounded by the graphs of \(y=e^{-x}, y=-e^{-x}, x=0,\) and \(x=L .\) Find its center of mass. How does the center of mass change as \(L \rightarrow \infty ?\)
Evaluate the following integrals in spherical coordinates. $$\int_{0}^{\pi} \int_{0}^{\pi / 6} \int_{2 \sec \varphi}^{4} \rho^{2} \sin \varphi d \rho d \varphi d \theta$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.