Chapter 13: Problem 46
Find the following average values. The average of the squared distance between the origin and points in the solid paraboloid \(D=\left\\{(x, y, z): 0 \leq z \leq 4-x^{2}-y^{2}\right\\}\)
Chapter 13: Problem 46
Find the following average values. The average of the squared distance between the origin and points in the solid paraboloid \(D=\left\\{(x, y, z): 0 \leq z \leq 4-x^{2}-y^{2}\right\\}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWater in a gas tank Before a gasoline-powered engine is started, water must be drained from the bottom of the fuel tank. Suppose the tank is a right circular cylinder on its side with a length of \(2 \mathrm{ft}\) and a radius of 1 ft. If the water level is 6 in above the lowest part of the tank, determine how much water must be drained from the tank.
Evaluate the following integrals using the method of your choice. A sketch is helpful. \(\iint_{R} \frac{x-y}{x^{2}+y^{2}+1} d A ; R\) is the region bounded by the unit circle centered at the origin.
Density distribution A right circular cylinder with height \(8 \mathrm{cm}\) and radius \(2 \mathrm{cm}\) is filled with water. A heated filament running along its axis produces a variable density in the water given by \(\rho(r)=1-0.05 e^{-0.01 r^{2}} \mathrm{g} / \mathrm{cm}^{3}(\rho\) stands for density here, not the radial spherical coordinate). Find the mass of the water in the cylinder. Neglect the volume of the filament.
Miscellaneous volumes Choose the best coordinate system for finding the volume of the following solids. Surfaces are specified using the coordinates that give the simplest description, but the simplest integration may be with respect to different variables. Volume of a drilled hemisphere Find the volume of material remaining in a hemisphere of radius 2 after a cylindrical hole of radius 1 is drilled through the center of the hemisphere perpendicular to its base.
Changing order of integration If possible, write iterated integrals in spherical coordinates for the following regions in the specified orders. Sketch the region of integration. Assume that \(f\) is continuous on the region. $$\begin{aligned}&\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{4 \sec \varphi} f(\rho, \varphi, \theta) \rho^{2} \sin \varphi d \rho d \varphi d \theta \text { in the orders }\\\&d \rho d \theta d \varphi \text { and } d \theta d \rho d \varphi\end{aligned}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.