Chapter 13: Problem 45
Find the following average values. The average of the squared distance between the origin and points in the solid cylinder \(D=\left\\{(x, y, z): x^{2}+y^{2} \leq 4,0 \leq z \leq 2\right\\}\)
Chapter 13: Problem 45
Find the following average values. The average of the squared distance between the origin and points in the solid cylinder \(D=\left\\{(x, y, z): x^{2}+y^{2} \leq 4,0 \leq z \leq 2\right\\}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDensity distribution A right circular cylinder with height \(8 \mathrm{cm}\) and radius \(2 \mathrm{cm}\) is filled with water. A heated filament running along its axis produces a variable density in the water given by \(\rho(r)=1-0.05 e^{-0.01 r^{2}} \mathrm{g} / \mathrm{cm}^{3}(\rho\) stands for density here, not the radial spherical coordinate). Find the mass of the water in the cylinder. Neglect the volume of the filament.
Linear transformations Consider the linear transformation \(T\) in \(\mathbb{R}^{2}\) given by \(x=a u+b v, y=c u+d v,\) where \(a, b, c,\) and \(d\) are real numbers, with \(a d \neq b c\) a. Find the Jacobian of \(T\) b. Let \(S\) be the square in the \(u v\) -plane with vertices (0,0) \((1,0),(0,1),\) and \((1,1),\) and let \(R=T(S) .\) Show that \(\operatorname{area}(R)=|J(u, v)|\) c. Let \(\ell\) be the line segment joining the points \(P\) and \(Q\) in the uv- plane. Show that \(T(\ell)\) (the image of \(\ell\) under \(T\) ) is the line segment joining \(T(P)\) and \(T(Q)\) in the \(x y\) -plane. (Hint: Use vectors.) d. Show that if \(S\) is a parallelogram in the \(u v\) -plane and \(R=T(S),\) then \(\operatorname{area}(R)=|J(u, v)| \operatorname{area}(S) .\) (Hint: Without loss of generality, assume the vertices of \(S\) are \((0,0),(A, 0)\) \((B, C),\) and \((A+B, C),\) where \(A, B,\) and \(C\) are positive, and use vectors.)
A thin plate of unit density occupies the region between the parabola \(y=a x^{2}\) and the horizontal line \(y=b,\) where \(a>0\) and \(b>0 .\) Show that the center of mass is \(\left(0, \frac{3 b}{5}\right),\) independent of \(a\)
General volume formulas Use integration to find the volume of the following solids. In each case, choose a convenient coordinate system, find equations for the bounding surfaces, set up a triple integral, and evaluate the integral. Assume that \(a, b, c, r, R,\) and \(h\) are positive constants. Frustum of a cone Find the volume of a truncated solid cone of height \(h\) whose ends have radii \(r\) and \(R\).
Evaluate the following integrals using the method of your choice. A sketch is helpful. $$\iint_{R} \sqrt{x^{2}+y^{2}} d A ; R=\left\\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\\}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.