Chapter 13: Problem 45
Find the following average values. The average distance between points of the disk \(\\{(r, \theta): 0 \leq r \leq a\\}\) and the origin
Chapter 13: Problem 45
Find the following average values. The average distance between points of the disk \(\\{(r, \theta): 0 \leq r \leq a\\}\) and the origin
All the tools & learning materials you need for study success - in one app.
Get started for freeLinear transformations Consider the linear transformation \(T\) in \(\mathbb{R}^{2}\) given by \(x=a u+b v, y=c u+d v,\) where \(a, b, c,\) and \(d\) are real numbers, with \(a d \neq b c\) a. Find the Jacobian of \(T\) b. Let \(S\) be the square in the \(u v\) -plane with vertices (0,0) \((1,0),(0,1),\) and \((1,1),\) and let \(R=T(S) .\) Show that \(\operatorname{area}(R)=|J(u, v)|\) c. Let \(\ell\) be the line segment joining the points \(P\) and \(Q\) in the uv- plane. Show that \(T(\ell)\) (the image of \(\ell\) under \(T\) ) is the line segment joining \(T(P)\) and \(T(Q)\) in the \(x y\) -plane. (Hint: Use vectors.) d. Show that if \(S\) is a parallelogram in the \(u v\) -plane and \(R=T(S),\) then \(\operatorname{area}(R)=|J(u, v)| \operatorname{area}(S) .\) (Hint: Without loss of generality, assume the vertices of \(S\) are \((0,0),(A, 0)\) \((B, C),\) and \((A+B, C),\) where \(A, B,\) and \(C\) are positive, and use vectors.)
The limaçon \(r=b+a \cos \theta\) has an inner loop if \(b a\). a. Find the area of the region bounded by the limaçon \(r=2+\cos \theta\) b. Find the area of the region outside the inner loop and inside the outer loop of the limaçon \(r=1+2 \cos \theta\) c. Find the area of the region inside the inner loop of the limaçon $r=1+2 \cos \theta$
Evaluate the following integrals in spherical coordinates. $$\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1}^{2 \sec \varphi}\left(\rho^{-3}\right) \rho^{2} \sin \varphi d \rho d \varphi d \theta$$
Consider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A solid cone has a base with a radius of \(a\) and a height of \(h\). How far from the base is the center of mass?
Use polar coordinates to find the centroid of the following constant-density plane regions. The region bounded by one leaf of the rose \(r=\sin 2 \theta,\) for \(0 \leq \theta \leq \pi / 2\) \((\bar{x}, \bar{y})=\left(\frac{128}{105 \pi}, \frac{128}{105 \pi}\right)$$(\bar{x}, \bar{y})=\left(\frac{17}{18}, 0\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.