Chapter 13: Problem 44
Evaluate the following iterated integrals. $$\int_{0}^{2} \int_{0}^{1} x^{5} y^{2} e^{x^{3} y^{3}} d y d x$$
Chapter 13: Problem 44
Evaluate the following iterated integrals. $$\int_{0}^{2} \int_{0}^{1} x^{5} y^{2} e^{x^{3} y^{3}} d y d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeAn important integral in statistics associated with the normal distribution is \(I=\int_{-\infty}^{\infty} e^{-x^{2}} d x .\) It is evaluated in the following steps. a. Assume that $$\begin{aligned} I^{2} &=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) \\ &=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y \end{aligned}$$ where we have chosen the variables of integration to be \(x\) and \(y\) and then written the product as an iterated integral. Evaluate this integral in polar coordinates and show that \(I=\sqrt{\pi} .\) Why is the solution \(I=-\sqrt{\pi}\) rejected? b. Evaluate \(\int_{0}^{\infty} e^{-x^{2}} d x, \int_{0}^{\infty} x e^{-x^{2}} d x,\) and \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x\) (using part (a) if needed).
Let \(D\) be the solid bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a>0, b>0,\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=\)au, \(y=b v, z=c w\) Evaluate \(\iiint_{D}|x y z| d A\)
Let \(D\) be the solid bounded by \(y=x, z=1-y^{2}, x=0\) and \(z=0 .\) Write triple integrals over \(D\) in all six possible orders of integration.
Let \(f\) be a continuous function on \([0,1] .\) Prove that $$\int_{0}^{1} \int_{x}^{1} \int_{x}^{y} f(x) f(y) f(z) d z d y d x=\frac{1}{6}\left(\int_{0}^{1} f(x) d x\right)^{3}$$
Use spherical coordinates to find the volume of the following solids. The solid bounded by the sphere \(\rho=2 \cos \varphi\) and the hemisphere \(\rho=1, z \geq 0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.