Chapter 13: Problem 43
Evaluate the following iterated integrals. $$\int_{1}^{2} \int_{1}^{2} \frac{x}{x+y} d y d x$$
Chapter 13: Problem 43
Evaluate the following iterated integrals. $$\int_{1}^{2} \int_{1}^{2} \frac{x}{x+y} d y d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMiscellaneous volumes Choose the best coordinate system for finding the volume of the following solids. Surfaces are specified using the coordinates that give the simplest description, but the simplest integration may be with respect to different variables. Volume of a drilled hemisphere Find the volume of material remaining in a hemisphere of radius 2 after a cylindrical hole of radius 1 is drilled through the center of the hemisphere perpendicular to its base.
Improper integrals arise in polar coordinates when the radial coordinate \(r\) becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: $$\int_{\alpha}^{\beta} \int_{a}^{\infty} f(r, \theta) r d r d \theta=\lim _{b \rightarrow \infty} \int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta$$ Use this technique to evaluate the following integrals. $$\iint_{R} e^{-x^{2}-y^{2}} d A ; R=\\{(r, \theta): 0 \leq r < \infty, 0 \leq \theta \leq \pi / 2\\}$$
An important integral in statistics associated with the normal distribution is \(I=\int_{-\infty}^{\infty} e^{-x^{2}} d x .\) It is evaluated in the following steps. a. Assume that $$\begin{aligned} I^{2} &=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) \\ &=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y \end{aligned}$$ where we have chosen the variables of integration to be \(x\) and \(y\) and then written the product as an iterated integral. Evaluate this integral in polar coordinates and show that \(I=\sqrt{\pi} .\) Why is the solution \(I=-\sqrt{\pi}\) rejected? b. Evaluate \(\int_{0}^{\infty} e^{-x^{2}} d x, \int_{0}^{\infty} x e^{-x^{2}} d x,\) and \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x\) (using part (a) if needed).
Consider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A solid rectangular box has sides of length \(a, b,\) and \(c .\) Where is the center of mass relative to the faces of the box?
Find the coordinates of the center of mass of the following solids with variable density. The interior of the prism formed by \(z=x, x=1, y=4,\) and the coordinate planes with \(\rho(x, y, z)=2+y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.