Chapter 13: Problem 41
Evaluate the following integrals in spherical coordinates. \(\iiint_{D} \frac{d V}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} ; D\) is the solid between the spheres of radius 1 and 2 centered at the origin.
Chapter 13: Problem 41
Evaluate the following integrals in spherical coordinates. \(\iiint_{D} \frac{d V}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} ; D\) is the solid between the spheres of radius 1 and 2 centered at the origin.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the surface \(z=x^{2}-y^{2}\) a. Find the region in the \(x y\) -plane in polar coordinates for which \(z \geq 0\) b. Let \(R=\\{(r, \theta): 0 \leq r \leq a,-\pi / 4 \leq \theta \leq \pi / 4\\},\) which is a sector of a circle of radius \(a\). Find the volume of the region below the hyperbolic paraboloid and above the region \(R\)
Spherical coordinates Evaluate the Jacobian for the transformation from spherical to rectangular coordinates: \(x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi .\) Show that \(J(\rho, \varphi, \theta)=\rho^{2} \sin \varphi\)
Evaluate the following integrals in spherical coordinates. $$\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1}^{2 \sec \varphi}\left(\rho^{-3}\right) \rho^{2} \sin \varphi d \rho d \varphi d \theta$$
Mass from density Find the mass of the following solids with the given density functions. Note that density is described by the function \(f\) to avoid confusion with the radial spherical coordinate \(\rho\). The solid cylinder \(\\{(r, \theta, z): 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi\) \(-1 \leq z \leq 1\\}\) with a density of \(f(r, \theta, z)=(2-|z|)(4-r)\)
Water in a gas tank Before a gasoline-powered engine is started, water must be drained from the bottom of the fuel tank. Suppose the tank is a right circular cylinder on its side with a length of \(2 \mathrm{ft}\) and a radius of 1 ft. If the water level is 6 in above the lowest part of the tank, determine how much water must be drained from the tank.
What do you think about this solution?
We value your feedback to improve our textbook solutions.