Chapter 13: Problem 40
Rewrite the following integrals using the indicated order of integration and then evaluate the resulting integral. $$\int_{0}^{1} \int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} d z d y d x \text { in the order } d y d z d x$$
Chapter 13: Problem 40
Rewrite the following integrals using the indicated order of integration and then evaluate the resulting integral. $$\int_{0}^{1} \int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} d z d y d x \text { in the order } d y d z d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMiscellaneous volumes Choose the best coordinate system for finding the volume of the following solids. Surfaces are specified using the coordinates that give the simplest description, but the simplest integration may be with respect to different variables. That part of the solid cylinder \(r \leq 2\) that lies between the cones \(\varphi=\pi / 3\) and \(\varphi=2 \pi / 3\)
Use spherical coordinates to find the volume of the following solids. The solid cardioid of revolution \(D=\\{(\rho, \varphi, \theta): 0 \leq \rho \leq 1+\cos \varphi, 0 \leq \varphi \leq \pi, 0 \leq \theta \leq 2 \pi\\}\)
A thin (one-dimensional) wire of constant density is bent into the shape of a semicircle of radius \(a\). Find the location of its center of mass. (Hint: Treat the wire as a thin halfannulus with width \(\Delta a,\) and then let \(\Delta a \rightarrow 0\).)
For what values of \(p\) does the integral \(\iint_{R} \frac{d A}{\left(x^{2}+y^{2}\right)^{p}}\) exist in the following cases? a. \(R=\\{(r, \theta): 1 \leq r < \infty, 0 \leq \theta \leq 2 \pi\\}\) b. \(R=\\{(r, \theta): 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\\}\)
\(A\) thin plate is bounded by the graphs of \(y=e^{-x}, y=-e^{-x}, x=0,\) and \(x=L .\) Find its center of mass. How does the center of mass change as \(L \rightarrow \infty ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.