Chapter 13: Problem 4
Sketch the region of integration for the integral \(\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-y^{2}-z^{2}}} f(x, y, z) d x d y d z\)
Chapter 13: Problem 4
Sketch the region of integration for the integral \(\int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \int_{0}^{\sqrt{1-y^{2}-z^{2}}} f(x, y, z) d x d y d z\)
All the tools & learning materials you need for study success - in one app.
Get started for freeImproper integrals arise in polar coordinates when the radial coordinate \(r\) becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: $$\int_{\alpha}^{\beta} \int_{a}^{\infty} f(r, \theta) r d r d \theta=\lim _{b \rightarrow \infty} \int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta$$ Use this technique to evaluate the following integrals. $$\int_{0}^{\pi / 2} \int_{1}^{\infty} \frac{\cos \theta}{r^{3}} r d r d \theta$$
Evaluate the following integrals using the method of your choice. A sketch is helpful. $$\begin{array}{l} \iint_{R} \frac{d A}{4+\sqrt{x^{2}+y^{2}}} ; R=\\{(r, \theta): 0 \leq r \leq 2 \\\ \pi / 2 \leq \theta \leq 3 \pi / 2\\} \end{array}$$
Parabolic coordinates Let \(T\) be the transformation \(x=u^{2}-v^{2}\) \(y=2 u v\) a. Show that the lines \(u=a\) in the \(u v\) -plane map to parabolas in the \(x y\) -plane that open in the negative \(x\) -direction with vertices on the positive \(x\) -axis. b. Show that the lines \(v=b\) in the \(u v\) -plane map to parabolas in the \(x y\) -plane that open in the positive \(x\) -direction with vertices on the negative \(x\) -axis. c. Evaluate \(J(u, v)\) d. Use a change of variables to find the area of the region bounded by \(x=4-y^{2} / 16\) and \(x=y^{2} / 4-1\) e. Use a change of variables to find the area of the curved rectangle above the \(x\) -axis bounded by \(x=4-y^{2} / 16\) \(x=9-y^{2} / 36, x=y^{2} / 4-1,\) and \(x=y^{2} / 64-16\) f. Describe the effect of the transformation \(x=2 u v\) \(y=u^{2}-v^{2}\) on horizontal and vertical lines in the \(u v\) -plane.
General volume formulas Use integration to find the volume of the following solids. In each case, choose a convenient coordinate system, find equations for the bounding surfaces, set up a triple integral, and evaluate the integral. Assume that \(a, b, c, r, R,\) and \(h\) are positive constants. Frustum of a cone Find the volume of a truncated solid cone of height \(h\) whose ends have radii \(r\) and \(R\).
Let \(D\) be the solid bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a>0, b>0,\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=\)au, \(y=b v, z=c w\) Find the volume of \(D\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.