Chapter 13: Problem 4
Describe the set \(\\{(\rho, \varphi, \theta): \varphi=\pi / 4\\}\) in spherical coordinates.
Chapter 13: Problem 4
Describe the set \(\\{(\rho, \varphi, \theta): \varphi=\pi / 4\\}\) in spherical coordinates.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals using the method of your choice. A sketch is helpful. $$\iint_{R} \sqrt{x^{2}+y^{2}} d A ; R=\left\\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\\}$$
Determine whether the following statements are true and give an explanation or counterexample. a. Any point on the \(z\) -axis has more than one representation in both cylindrical and spherical coordinates. b. The sets \(\\{(r, \theta, z): r=z\\}\) and \(\\{(\rho, \varphi, \theta): \varphi=\pi / 4\\}\) are the same.
General volume formulas Use integration to find the volume of the following solids. In each case, choose a convenient coordinate system, find equations for the bounding surfaces, set up a triple integral, and evaluate the integral. Assume that \(a, b, c, r, R,\) and \(h\) are positive constants. Ellipsoid Find the volume of a solid ellipsoid with axes of length \(2 a, 2 b,\) and \(2 c\).
Evaluate the following integrals using the method of your choice. A sketch is helpful. $$\iint_{R} \sqrt{x^{2}+y^{2}} d A ; R=\\{(x, y): 0 \leq y \leq x \leq 1\\}$$
Consider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A tetrahedron is bounded by the coordinate planes and the plane \(x / a+y / a+z / a=1 .\) What are the coordinates of the center of mass?
What do you think about this solution?
We value your feedback to improve our textbook solutions.