Chapter 13: Problem 39
Evaluate the Jacobians \(J(u, v, w)\) for the following transformations. $$x=v w, y=u w, z=u^{2}-v^{2}$$
Chapter 13: Problem 39
Evaluate the Jacobians \(J(u, v, w)\) for the following transformations. $$x=v w, y=u w, z=u^{2}-v^{2}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(D\) be the solid bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a>0, b>0,\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=\)au, \(y=b v, z=c w\) Find the volume of \(D\)
Consider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A solid rectangular box has sides of length \(a, b,\) and \(c .\) Where is the center of mass relative to the faces of the box?
Integrals in strips Consider the integral $$I=\iint_{R} \frac{d A}{\left(1+x^{2}+y^{2}\right)^{2}}$$ where \(R=\\{(x, y): 0 \leq x \leq 1,0 \leq y \leq a\\}\) a. Evaluate \(I\) for \(a=1 .\) (Hint: Use polar coordinates.) b. Evaluate \(I\) for arbitrary \(a > 0\) c. Let \(a \rightarrow \infty\) in part (b) to find \(I\) over the infinite strip \(R=\\{(x, y): 0 \leq x \leq 1,0 \leq y < \infty\\}\)
Improper integrals arise in polar coordinates when the radial coordinate \(r\) becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: $$\int_{\alpha}^{\beta} \int_{a}^{\infty} f(r, \theta) r d r d \theta=\lim _{b \rightarrow \infty} \int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta$$ Use this technique to evaluate the following integrals. $$\iint_{R} e^{-x^{2}-y^{2}} d A ; R=\\{(r, \theta): 0 \leq r < \infty, 0 \leq \theta \leq \pi / 2\\}$$
Use integration to show that the circles \(r=2 a \cos \theta\) and \(r=2 a \sin \theta\) have the same area, which is \(\pi a^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.