Chapter 13: Problem 3
Which order of integration is preferable to integrate \(f(x, y)=x y\) over \(R=\\{(x, y): y-1 \leq x \leq 1-y, 0 \leq y \leq 1\\} ?\)
Chapter 13: Problem 3
Which order of integration is preferable to integrate \(f(x, y)=x y\) over \(R=\\{(x, y): y-1 \leq x \leq 1-y, 0 \leq y \leq 1\\} ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeChanging order of integration If possible, write iterated integrals in cylindrical coordinates for the following regions in the specified orders. Sketch the region of integration. The solid above the cone \(z=r\) and below the sphere \(\rho=2,\) for \(z \geq 0,\) in the orders \(d z d r d \theta, d r d z d \theta,\) and \(d \theta d z d r\)
Improper integrals arise in polar coordinates when the radial coordinate \(r\) becomes arbitrarily large. Under certain conditions, these integrals are treated in the usual way: $$\int_{\alpha}^{\beta} \int_{a}^{\infty} f(r, \theta) r d r d \theta=\lim _{b \rightarrow \infty} \int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta$$ Use this technique to evaluate the following integrals. $$\iint_{R} \frac{d A}{\left(x^{2}+y^{2}\right)^{5 / 2}} ; R=\\{(r, \theta): 1 \leq r < \infty, 0 \leq \theta \leq 2 \pi\\}$$
Use a change of variables to evaluate the following integrals. $$\begin{aligned} &\iiint_{D} x y d V ; D \text { is bounded by the planes } y-x=0\\\ &y-x=2, z-y=0, z-y=1, z=0, \text { and } z=3 \end{aligned}$$
Find equations for the bounding surfaces, set up a volume integral, and evaluate the integral to obtain a volume formula for each region. Assume that \(a, b, c, r, R,\) and h are positive constants. Find the volume of an ellipsoid with axes of length \(2 a\) \(2 b,\) and \(2 c\)
Density distribution A right circular cylinder with height \(8 \mathrm{cm}\) and radius \(2 \mathrm{cm}\) is filled with water. A heated filament running along its axis produces a variable density in the water given by \(\rho(r)=1-0.05 e^{-0.01 r^{2}} \mathrm{g} / \mathrm{cm}^{3}(\rho\) stands for density here, not the radial spherical coordinate). Find the mass of the water in the cylinder. Neglect the volume of the filament.
What do you think about this solution?
We value your feedback to improve our textbook solutions.