Chapter 13: Problem 2
Explain how spherical coordinates are used to describe a point in \(\mathbb{R}^{3}\).
Chapter 13: Problem 2
Explain how spherical coordinates are used to describe a point in \(\mathbb{R}^{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why or why not ,Determine whether the following statements are true and give an explanation or counterexample. a. A thin plate of constant density that is symmetric about the \(x\) -axis has a center of mass with an \(x\) -coordinate of zero. b. A thin plate of constant density that is symmetric about both the \(x\) -axis and the \(y\) -axis has its center of mass at the origin. c. The center of mass of a thin plate must lie on the plate. d. The center of mass of a connected solid region (all in one piece) must lie within the region.
Use integration to show that the circles \(r=2 a \cos \theta\) and \(r=2 a \sin \theta\) have the same area, which is \(\pi a^{2}\)
Mass from density Find the mass of the following solids with the given density functions. Note that density is described by the function \(f\) to avoid confusion with the radial spherical coordinate \(\rho\). The solid cone \(\\{(r, \theta, z): 0 \leq z \leq 4,0 \leq r \leq \sqrt{3} z\) \(0 \leq \theta \leq 2 \pi\\}\) with a density \(f(r, \theta, z)=5-z\)
Use spherical coordinates to find the volume of the following solids. The solid cardioid of revolution \(D=\\{(\rho, \varphi, \theta): 0 \leq \rho \leq 1+\cos \varphi, 0 \leq \varphi \leq \pi, 0 \leq \theta \leq 2 \pi\\}\)
Let \(D\) be the solid bounded by the ellipsoid \(x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1,\) where \(a>0, b>0,\) and \(c>0\) are real numbers. Let \(T\) be the transformation \(x=\)au, \(y=b v, z=c w\) Find the center of mass of the upper half of \(D(z \geq 0)\) assuming it has a constant density.
What do you think about this solution?
We value your feedback to improve our textbook solutions.