Chapter 13: Problem 1
Suppose \(S\) is the unit square in the first quadrant of the \(u v\) -plane. Describe the image of the transformation \(T: x=2 u, y=2 v\)
Chapter 13: Problem 1
Suppose \(S\) is the unit square in the first quadrant of the \(u v\) -plane. Describe the image of the transformation \(T: x=2 u, y=2 v\)
All the tools & learning materials you need for study success - in one app.
Get started for freeMiscellaneous volumes Choose the best coordinate system for finding the volume of the following solids. Surfaces are specified using the coordinates that give the simplest description, but the simplest integration may be with respect to different variables. The solid inside the sphere \(\rho=1\) and below the cone \(\varphi=\pi / 4\) for \(z \geq 0\)
Changing order of integration If possible, write iterated integrals in cylindrical coordinates for the following regions in the specified orders. Sketch the region of integration. The solid above the cone \(z=r\) and below the sphere \(\rho=2,\) for \(z \geq 0,\) in the orders \(d z d r d \theta, d r d z d \theta,\) and \(d \theta d z d r\)
Determine whether the following statements are true and give an explanation or counterexample. a. Any point on the \(z\) -axis has more than one representation in both cylindrical and spherical coordinates. b. The sets \(\\{(r, \theta, z): r=z\\}\) and \(\\{(\rho, \varphi, \theta): \varphi=\pi / 4\\}\) are the same.
Evaluate the following integrals in spherical coordinates. $$\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{4 \sec \varphi} \rho^{2} \sin \varphi d \rho d \varphi d \theta$$
Limiting center of mass \(A\) thin rod of length \(L\) has a linear density given by \(\rho(x)=\frac{10}{1+x^{2}}\) on the interval \(0 \leq x \leq L\). Find the mass and center of mass of the rod. How does the center of mass change as \(L \rightarrow \infty ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.