Chapter 13: Problem 1
Explain how to find the balance point for two people on opposite ends of a (massless) plank that rests on a pivot.
Chapter 13: Problem 1
Explain how to find the balance point for two people on opposite ends of a (massless) plank that rests on a pivot.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe occurrence of random events (such as phone calls or e-mail messages) is often idealized using an exponential distribution. If \(\lambda\) is the average rate of occurrence of such an event, assumed to be constant over time, then the average time between occurrences is \(\lambda^{-1}\) (for example, if phone calls arrive at a rate of \(\lambda=2 /\) min, then the mean time between phone calls is \(\lambda^{-1}=\frac{1}{2} \mathrm{min}\) ). The exponential distribution is given by \(f(t)=\lambda e^{-\lambda t},\) for \(0 \leq t<\infty\) a. Suppose you work at a customer service desk and phone calls arrive at an average rate of \(\lambda_{1}=0.8 /\) min (meaning the average time between phone calls is \(1 / 0.8=1.25 \mathrm{min}\) ). The probability that a phone call arrives during the interval \([0, T]\) is \(p(T)=\int_{0}^{T} \lambda_{1} e^{-\lambda_{1} t} d t .\) Find the probability that a phone call arrives during the first 45 s \((0.75\) min) that you work at the desk. b. Now suppose that walk-in customers also arrive at your desk at an average rate of \(\lambda_{2}=0.1 /\) min. The probability that a phone $$p(T)=\int_{0}^{T} \int_{0}^{T} \lambda_{1} e^{-\lambda_{1} t} \lambda_{2} e^{-\lambda_{2} x} d t d s$$ Find the probability that a phone call and a customer arrive during the first 45 s that you work at the desk. c. E-mail messages also arrive at your desk at an average rate of \(\lambda_{3}=0.05 /\) min. The probability that a phone call and a customer and an e-mail message arrive during the interval \([0, T]\) is $$p(T)=\int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \lambda_{1} e^{-\lambda_{1} t} \lambda_{2} e^{-\lambda_{2} s} \lambda_{3} e^{-\lambda_{3} u} d t d s d u$$ Find the probability that a phone call and a customer and an e-mail message arrive during the first 45 s that you work at the desk.
The limaçon \(r=b+a \cos \theta\) has an inner loop if \(b a\). a. Find the area of the region bounded by the limaçon \(r=2+\cos \theta\) b. Find the area of the region outside the inner loop and inside the outer loop of the limaçon \(r=1+2 \cos \theta\) c. Find the area of the region inside the inner loop of the limaçon $r=1+2 \cos \theta$
Find equations for the bounding surfaces, set up a volume integral, and evaluate the integral to obtain a volume formula for each region. Assume that \(a, b, c, r, R,\) and h are positive constants. Find the volume of a truncated cone of height \(h\) whose ends have radii \(r\) and \(R\)
\(A\) thin plate is bounded by the graphs of \(y=e^{-x}, y=-e^{-x}, x=0,\) and \(x=L .\) Find its center of mass. How does the center of mass change as \(L \rightarrow \infty ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.