Chapter 13: Problem 1
Explain how cylindrical coordinates are used to describe a point in \(\mathbb{R}^{3}\).
Chapter 13: Problem 1
Explain how cylindrical coordinates are used to describe a point in \(\mathbb{R}^{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeA thin (one-dimensional) wire of constant density is bent into the shape of a semicircle of radius \(a\). Find the location of its center of mass. (Hint: Treat the wire as a thin halfannulus with width \(\Delta a,\) and then let \(\Delta a \rightarrow 0\).)
Find equations for the bounding surfaces, set up a volume integral, and evaluate the integral to obtain a volume formula for each region. Assume that \(a, b, c, r, R,\) and h are positive constants. Find the volume of a right circular cone with height \(h\) and base radius \(r\)
Changing order of integration If possible, write iterated integrals in cylindrical coordinates for the following regions in the specified orders. Sketch the region of integration. The solid outside the cylinder \(r=1\) and inside the sphere \(\rho=5\) for \(z \geq 0,\) in the orders \(d z d r d \theta, d r d z d \theta,\) and \(d \theta d z d r\)
Consider the surface \(z=x^{2}-y^{2}\) a. Find the region in the \(x y\) -plane in polar coordinates for which \(z \geq 0\) b. Let \(R=\\{(r, \theta): 0 \leq r \leq a,-\pi / 4 \leq \theta \leq \pi / 4\\},\) which is a sector of a circle of radius \(a\). Find the volume of the region below the hyperbolic paraboloid and above the region \(R\)
General volume formulas Use integration to find the volume of the following solids. In each case, choose a convenient coordinate system, find equations for the bounding surfaces, set up a triple integral, and evaluate the integral. Assume that \(a, b, c, r, R,\) and \(h\) are positive constants. Frustum of a cone Find the volume of a truncated solid cone of height \(h\) whose ends have radii \(r\) and \(R\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.