Chapter 13: Problem 1
Draw the region \(\\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi / 2\\} .\) Why is it called a polar rectangle?
Chapter 13: Problem 1
Draw the region \(\\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi / 2\\} .\) Why is it called a polar rectangle?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A tetrahedron is bounded by the coordinate planes and the plane \(x / a+y / a+z / a=1 .\) What are the coordinates of the center of mass?
Meaning of the Jacobian The Jacobian is a magnification (or reduction) factor that relates the area of a small region near the point \((u, v)\) to the area of the image of that region near the point \((x, y)\) a. Suppose \(S\) is a rectangle in the \(u v\) -plane with vertices \(O(0,0)\) \(P(\Delta u, 0),(\Delta u, \Delta v),\) and \(Q(0, \Delta v)\) (see figure). The image of \(S\) under the transformation \(x=g(u, v), y=h(u, v)\) is a region \(R\) in the \(x y\) -plane. Let \(O^{\prime}, P^{\prime},\) and \(Q^{\prime}\) be the images of O, \(P,\) and \(Q,\) respectively, in the \(x y\) -plane, where \(O^{\prime}, P^{\prime},\) and \(Q^{\prime}\) do not all lie on the same line. Explain why the coordinates of \(\boldsymbol{O}^{\prime}, \boldsymbol{P}^{\prime},\) and \(Q^{\prime}\) are \((g(0,0), h(0,0)),(g(\Delta u, 0), h(\Delta u, 0))\) and \((g(0, \Delta v), h(0, \Delta v)),\) respectively. b. Use a Taylor series in both variables to show that $$\begin{array}{l} g(\Delta u, 0) \approx g(0,0)+g_{u}(0,0) \Delta u \\ g(0, \Delta v) \approx g(0,0)+g_{v}(0,0) \Delta v \\ h(\Delta u, 0) \approx h(0,0)+h_{u}(0,0) \Delta u \\ h(0, \Delta v) \approx h(0,0)+h_{v}(0,0) \Delta v \end{array}$$ where \(g_{u}(0,0)\) is \(\frac{\partial x}{\partial u}\) evaluated at \((0,0),\) with similar meanings for \(g_{v}, h_{u},\) and \(h_{v}\) c. Consider the vectors \(\overrightarrow{O^{\prime} P^{\prime}}\) and \(\overrightarrow{O^{\prime} Q^{\prime}}\) and the parallelogram, two of whose sides are \(\overrightarrow{O^{\prime} P^{\prime}}\) and \(\overrightarrow{O^{\prime} Q^{\prime}}\). Use the cross product to show that the area of the parallelogram is approximately \(|J(u, v)| \Delta u \Delta v\) d. Explain why the ratio of the area of \(R\) to the area of \(S\) is approximately \(|J(u, v)|\)
Use polar coordinates to find the centroid of the following constant-density plane regions. The region bounded by the cardioid \(r=3-3 \cos \theta\)
A thin (one-dimensional) wire of constant density is bent into the shape of a semicircle of radius \(a\). Find the location of its center of mass. (Hint: Treat the wire as a thin halfannulus with width \(\Delta a,\) and then let \(\Delta a \rightarrow 0\).)
What do you think about this solution?
We value your feedback to improve our textbook solutions.