Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Draw the region \(\\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi / 2\\} .\) Why is it called a polar rectangle?

Short Answer

Expert verified
Answer: A polar rectangle is a region in polar coordinates bound by two circles and two straight lines starting from the origin, which corresponds to the angular boundaries. It closely resembles a rectangle in Cartesian coordinates. To identify a polar rectangle from given inequalities, analyze the conditions on \(r\) and \(\theta\), sketch the region, and ensure constant radial and angular spans are present.

Step by step solution

01

Analyzing the inequalities

The inequalities provided are \(1 \leq r \leq 2\) and \(0 \leq \theta \leq \pi / 2\). The first inequality tells us that the region must lie between the circles with radius \(1\) and \(2\). The second inequality tells us that the region should be in the first quadrant due to the values of \(\theta\).
02

Sketching the region

Sketch a \(r-\theta\) plane, and draw both the circles with radius \(1\) and \(2\). Also, mark the angle \(\theta = 0\) (positive x-axis) and \(\theta = \pi / 2\) (positive y-axis). The region described will be enclosed by these boundaries, which will form a sector in the first quadrant.
03

Visualizing the polar rectangle

Now, due to the boundaries, it is clear that the region formed is a sector of a circle located in the first quadrant. The important characteristic of this region is that its radial and angular spans are constant. This means that the region is bound by two circles and two straight lines starting from the origin (corresponding to the angular boundaries). This shape closely resembles a rectangle in Cartesian coordinates - hence it is named a polar rectangle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following two-and three-dimensional regions. Specify the surfaces and curves that bound the region, choose a convenient coordinate system, and compute the center of mass assuming constant density. All parameters are positive real numbers. A tetrahedron is bounded by the coordinate planes and the plane \(x / a+y / a+z / a=1 .\) What are the coordinates of the center of mass?

Meaning of the Jacobian The Jacobian is a magnification (or reduction) factor that relates the area of a small region near the point \((u, v)\) to the area of the image of that region near the point \((x, y)\) a. Suppose \(S\) is a rectangle in the \(u v\) -plane with vertices \(O(0,0)\) \(P(\Delta u, 0),(\Delta u, \Delta v),\) and \(Q(0, \Delta v)\) (see figure). The image of \(S\) under the transformation \(x=g(u, v), y=h(u, v)\) is a region \(R\) in the \(x y\) -plane. Let \(O^{\prime}, P^{\prime},\) and \(Q^{\prime}\) be the images of O, \(P,\) and \(Q,\) respectively, in the \(x y\) -plane, where \(O^{\prime}, P^{\prime},\) and \(Q^{\prime}\) do not all lie on the same line. Explain why the coordinates of \(\boldsymbol{O}^{\prime}, \boldsymbol{P}^{\prime},\) and \(Q^{\prime}\) are \((g(0,0), h(0,0)),(g(\Delta u, 0), h(\Delta u, 0))\) and \((g(0, \Delta v), h(0, \Delta v)),\) respectively. b. Use a Taylor series in both variables to show that $$\begin{array}{l} g(\Delta u, 0) \approx g(0,0)+g_{u}(0,0) \Delta u \\ g(0, \Delta v) \approx g(0,0)+g_{v}(0,0) \Delta v \\ h(\Delta u, 0) \approx h(0,0)+h_{u}(0,0) \Delta u \\ h(0, \Delta v) \approx h(0,0)+h_{v}(0,0) \Delta v \end{array}$$ where \(g_{u}(0,0)\) is \(\frac{\partial x}{\partial u}\) evaluated at \((0,0),\) with similar meanings for \(g_{v}, h_{u},\) and \(h_{v}\) c. Consider the vectors \(\overrightarrow{O^{\prime} P^{\prime}}\) and \(\overrightarrow{O^{\prime} Q^{\prime}}\) and the parallelogram, two of whose sides are \(\overrightarrow{O^{\prime} P^{\prime}}\) and \(\overrightarrow{O^{\prime} Q^{\prime}}\). Use the cross product to show that the area of the parallelogram is approximately \(|J(u, v)| \Delta u \Delta v\) d. Explain why the ratio of the area of \(R\) to the area of \(S\) is approximately \(|J(u, v)|\)

Use polar coordinates to find the centroid of the following constant-density plane regions. The region bounded by the cardioid \(r=3-3 \cos \theta\)

Suppose a wedge of cheese fills the region in the first octant bounded by the planes \(y=z, y=4,\) and \(x=4\) You could divide the wedge into two pieces of equal volume by slicing the wedge with the plane \(x=2 .\) Instead find \(a\) with \(0

A thin (one-dimensional) wire of constant density is bent into the shape of a semicircle of radius \(a\). Find the location of its center of mass. (Hint: Treat the wire as a thin halfannulus with width \(\Delta a,\) and then let \(\Delta a \rightarrow 0\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free