Chapter 11: Problem 89
Cusps and noncusps a. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{3}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve does not have a cusp at \(t=0 .\) Explain. b. Graph the curve \(\mathbf{r}(t)=\left\langle t^{3}, t^{2}\right\rangle .\) Show that \(\mathbf{r}^{\prime}(0)=\mathbf{0}\) and the curve has a cusp at \(t=0 .\) Explain. c. The functions \(\mathbf{r}(t)=\left\langle t, t^{2}\right\rangle\) and \(\mathbf{p}(t)=\left\langle t^{2}, t^{4}\right\rangle\) both satisfy \(y=x^{2} .\) Explain how the curves they parameterize are different. d. Consider the curve \(\mathbf{r}(t)=\left\langle t^{m}, t^{n}\right\rangle,\) where \(m>1\) and \(n>1\) are integers with no common factors. Is it true that the curve has a cusp at \(t=0\) if one (not both) of \(m\) and \(n\) is even? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.