Chapter 11: Problem 87
Prove that \(|c \mathbf{v}|=|c||\mathbf{v}|,\) where \(c\) is a scalar and \(\mathbf{v}\) is a vector.
Chapter 11: Problem 87
Prove that \(|c \mathbf{v}|=|c||\mathbf{v}|,\) where \(c\) is a scalar and \(\mathbf{v}\) is a vector.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\left\langle e^{t}, e^{2 t}, e^{3 t}\right\rangle ; t_{0}=0$$
Compute \(\mathbf{r}^{\prime \prime}(t)\) and \(\mathbf{r}^{\prime \prime \prime}(t)\) for the following functions. $$\mathbf{r}(t)=\left\langle e^{4 t}, 2 e^{-4 t}+1,2 e^{-t}\right\rangle$$
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\)
Let \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\). a. Assume that \(\lim \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle,\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0 .\) Prove that \(\lim _{t \rightarrow a} f(t)=L_{1}, \quad \lim _{t \rightarrow a} g(t)=L_{2}, \quad\) and \(\quad \lim _{t \rightarrow a} h(t)=L_{3}\). b. Assume that \(\lim _{t \rightarrow a} f(t)=L_{1}, \lim _{t \rightarrow a} g(t)=L_{2},\) and \(\lim _{t \rightarrow a} h(t)=L_{3} .\) Prove that \(\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0\).
An ant walks due east at a constant speed of \(2 \mathrm{mi} / \mathrm{hr}\) on a sheet of paper that rests on a table. Suddenly, the sheet of paper starts moving southeast at \(\sqrt{2} \mathrm{mi} / \mathrm{hr} .\) Describe the motion of the ant relative to the table.
What do you think about this solution?
We value your feedback to improve our textbook solutions.