Chapter 11: Problem 86
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Geometric-arithmetic mean Use the vectors \(\mathbf{u}=\langle\sqrt{a}, \sqrt{b}\rangle\) and \(\mathbf{v}=\langle\sqrt{b}, \sqrt{a}\rangle\) to show that \(\sqrt{a b} \leq(a+b) / 2,\) where \(a \geq 0\) and \(b \geq 0\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.