Chapter 11: Problem 80
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. Distributive properties a. Show that \((\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2}\) b. Show that \((\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\) if \(\mathbf{u}\) is orthogonal to \(\mathbf{v}\) c. Show that \((\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})=|\mathbf{u}|^{2}-|\mathbf{v}|^{2}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.