Chapter 11: Problem 79
Properties of dot products Let \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) \(\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle,\) and \(\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle .\) Prove the following vector properties, where \(c\) is a scalar. $$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.