Chapter 11: Problem 78
Two sides of a parallelogram are formed by the vectors \(\mathbf{u}\) and \(\mathbf{v}\). Prove that the diagonals of the parallelogram are \(\mathbf{u}+\mathbf{v}\) and \(\mathbf{u}-\mathbf{v}\)
Chapter 11: Problem 78
Two sides of a parallelogram are formed by the vectors \(\mathbf{u}\) and \(\mathbf{v}\). Prove that the diagonals of the parallelogram are \(\mathbf{u}+\mathbf{v}\) and \(\mathbf{u}-\mathbf{v}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following definite integrals. $$\int_{0}^{\ln 2}\left(e^{-t} \mathbf{i}+2 e^{2 t} \mathbf{j}-4 e^{t} \mathbf{k}\right) d t$$
Hexagonal circle packing The German mathematician Gauss proved that the densest way to pack circles with the same radius in the plane is to place the centers of the circles on a hexagonal grid (see figure). Some molecular structures use this packing or its three-dimensional analog. Assume all circles have a radius of 1 and let \(\mathbf{r}_{i j}\) be the vector that extends from the center of circle \(i\) to the center of circle \(j,\) for \(i, j=0,1, \ldots, 6\) a. Find \(\mathbf{r}_{0 j},\) for \(j=1,2, \ldots, 6\) b. Find \(\mathbf{r}_{12}, \mathbf{r}_{34},\) and \(\mathbf{r}_{61}\) c. Imagine circle 7 is added to the arrangement as shown in the figure. Find \(\mathbf{r}_{07}, \mathbf{r}_{17}, \mathbf{r}_{47},\) and \(\mathbf{r}_{75}\)
Proof of Product Rule By expressing \(\mathbf{u}\) in terms of its components, prove that $$\frac{d}{d t}(f(t) \mathbf{u}(t))=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$$
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\)
Show that two nonzero vectors \(\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle\) and \(\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle\) are perpendicular to each other if \(u_{1} v_{1}+u_{2} v_{2}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.