Chapter 11: Problem 78
Let \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\). a. Assume that \(\lim \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle,\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0 .\) Prove that \(\lim _{t \rightarrow a} f(t)=L_{1}, \quad \lim _{t \rightarrow a} g(t)=L_{2}, \quad\) and \(\quad \lim _{t \rightarrow a} h(t)=L_{3}\). b. Assume that \(\lim _{t \rightarrow a} f(t)=L_{1}, \lim _{t \rightarrow a} g(t)=L_{2},\) and \(\lim _{t \rightarrow a} h(t)=L_{3} .\) Prove that \(\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle\) which means that \(\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.