Chapter 11: Problem 75
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{v}(g(t))$$
Chapter 11: Problem 75
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{v}(g(t))$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDirection angles and cosines Let \(\mathbf{v}=\langle a, b, c\rangle\) and let \(\alpha, \beta\) and \(\gamma\) be the angles between \(\mathbf{v}\) and the positive \(x\) -axis, the positive \(y\) -axis, and the positive \(z\) -axis, respectively (see figure). a. Prove that \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\) b. Find a vector that makes a \(45^{\circ}\) angle with \(\mathbf{i}\) and \(\mathbf{j}\). What angle does it make with \(\mathbf{k} ?\) c. Find a vector that makes a \(60^{\circ}\) angle with i and \(\mathbf{j}\). What angle does it make with k? d. Is there a vector that makes a \(30^{\circ}\) angle with \(\mathbf{i}\) and \(\mathbf{j} ?\) Explain. e. Find a vector \(\mathbf{v}\) such that \(\alpha=\beta=\gamma .\) What is the angle?
Graph the curve \(\mathbf{r}(t)=\left\langle\frac{1}{2} \sin 2 t, \frac{1}{2}(1-\cos 2 t), \cos t\right\rangle\) and prove that it lies on the surface of a sphere centered at the origin.
Show that the (least) distance \(d\) between a point \(Q\) and a line \(\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}\) (both in \(\mathbb{R}^{3}\) ) is \(d=\frac{|\overrightarrow{P Q} \times \mathbf{v}|}{|\mathbf{v}|},\) where \(P\) is a point on the line.
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\)
Find the function \(\mathbf{r}\) that satisfies the given conditions. $$\mathbf{r}^{\prime}(t)=\left\langle e^{t}, \sin t, \sec ^{2} t\right\rangle ; \mathbf{r}(0)=\langle 2,2,2\rangle$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.