Chapter 11: Problem 74
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$g(t) \mathbf{v}(t)$$
Chapter 11: Problem 74
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$g(t) \mathbf{v}(t)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Graph the following curve and describe it. $$\begin{aligned}\mathbf{r}(t)=&\left(\frac{1}{\sqrt{2}} \cos t+\frac{1}{\sqrt{3}} \sin t\right) \mathbf{i}+\left(-\frac{1}{\sqrt{2}} \cos t+\frac{1}{\sqrt{3}} \sin t\right) \mathbf{j} \\\&+\left(\frac{1}{\sqrt{3}} \sin t\right) \mathbf{k} \end{aligned}$$
Compute the following derivatives. $$\frac{d}{d t}\left(t^{2}(\mathbf{i}+2 \mathbf{j}-2 t \mathbf{k}) \cdot\left(e^{t} \mathbf{i}+2 e^{t} \mathbf{j}-3 e^{-t} \mathbf{k}\right)\right)$$
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$
Suppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle 2+\cos t, 3+\sin 2 t, t\rangle ; t_{0}=\pi / 2$$
Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Triangle Inequality Consider the vectors \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{u}+\mathbf{v}\) (in any number of dimensions). Use the following steps to prove that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\) a. Show that \(|\mathbf{u}+\mathbf{v}|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+\) \(2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2}\) b. Use the Cauchy-Schwarz Inequality to show that \(|\mathbf{u}+\mathbf{v}|^{2} \leq(|\mathbf{u}|+|\mathbf{v}|)^{2}\) c. Conclude that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\) d. Interpret the Triangle Inequality geometrically in \(\mathbb{R}^{2}\) or \(\mathbb{R}^{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.