Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$g(t) \mathbf{v}(t)$$

Short Answer

Expert verified
Answer: The derivative of the function \(g(t) \mathbf{v}(t)\) is \(\left\langle 3t^{\frac{3}{2}}, -6t^{\frac{1}{2}}, t^{-\frac{1}{2}}\right\rangle\).

Step by step solution

01

Find the derivatives of g(t) and v(t)

First, we need to find the derivatives of the scalar function \(g(t)\) and the vector function \(\mathbf{v}(t)\). Let's begin with \(g(t)\): $$g(t) = 2 \sqrt{t} = 2t^{\frac{1}{2}}$$ Now, find the derivative of \(g(t)\): $$g'(t) = \frac{d}{dt} (2t^{\frac{1}{2}}) = t^{-\frac{1}{2}}$$ Next, find the derivative of the vector function \(\mathbf{v}(t)\): $$\mathbf{v}(t) = \left\langle t^{2}, -2t, 1\right\rangle$$ The derivative of \(\mathbf{v}(t)\) is: $$\mathbf{v}'(t) = \left\langle \frac{d}{dt}(t^{2}), \frac{d}{dt}(-2t), \frac{d}{dt}(1) \right\rangle = \left\langle 2t, -2, 0\right\rangle$$
02

Apply the product rule

Now, we will use the product rule to find the derivative of \(g(t)\mathbf{v}(t)\): $$(g(t) \mathbf{v}(t))' = g'(t) \mathbf{v}(t) + g(t) \mathbf{v}'(t)$$ Plug in the values we found for \(g'(t)\), \(\mathbf{v}(t)\), and \(\mathbf{v}'(t)\): $$(g(t) \mathbf{v}(t))' = t^{-\frac{1}{2}} \left\langle t^{2}, -2t, 1\right\rangle + 2t^{\frac{1}{2}} \left\langle 2t, -2, 0\right\rangle$$
03

Calculate the derivative

Now, it's time to calculate the actual derivative: $$(g(t) \mathbf{v}(t))' = \left\langle t^{-\frac{1}{2}}t^{2}, -2t^{-\frac{1}{2}}t, t^{-\frac{1}{2}}\right\rangle + \left\langle 2t^{\frac{3}{2}}, -4t^{\frac{1}{2}}, 0\right\rangle$$ Simplify: $$(g(t) \mathbf{v}(t))' = \left\langle t^{\frac{3}{2}}, -2t^{\frac{1}{2}}, t^{-\frac{1}{2}}\right\rangle + \left\langle 2t^{\frac{3}{2}}, -4t^{\frac{1}{2}}, 0\right\rangle$$ Finally, add the corresponding components of the two vectors: $$(g(t) \mathbf{v}(t))' = \left\langle t^{\frac{3}{2}} + 2t^{\frac{3}{2}}, -2t^{\frac{1}{2}} - 4t^{\frac{1}{2}}, t^{-\frac{1}{2}} + 0\right\rangle$$ Simplify the result: $$(g(t) \mathbf{v}(t))' = \left\langle 3t^{\frac{3}{2}}, -6t^{\frac{1}{2}}, t^{-\frac{1}{2}}\right\rangle$$ The derivative of the function \(g(t) \mathbf{v}(t)\) is: $$\boxed{(g(t) \mathbf{v}(t))' = \left\langle 3t^{\frac{3}{2}}, -6t^{\frac{1}{2}}, t^{-\frac{1}{2}}\right\rangle}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Graph the following curve and describe it. $$\begin{aligned}\mathbf{r}(t)=&\left(\frac{1}{\sqrt{2}} \cos t+\frac{1}{\sqrt{3}} \sin t\right) \mathbf{i}+\left(-\frac{1}{\sqrt{2}} \cos t+\frac{1}{\sqrt{3}} \sin t\right) \mathbf{j} \\\&+\left(\frac{1}{\sqrt{3}} \sin t\right) \mathbf{k} \end{aligned}$$

Compute the following derivatives. $$\frac{d}{d t}\left(t^{2}(\mathbf{i}+2 \mathbf{j}-2 t \mathbf{k}) \cdot\left(e^{t} \mathbf{i}+2 e^{t} \mathbf{j}-3 e^{-t} \mathbf{k}\right)\right)$$

Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$

Suppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle 2+\cos t, 3+\sin 2 t, t\rangle ; t_{0}=\pi / 2$$

Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Triangle Inequality Consider the vectors \(\mathbf{u}, \mathbf{v},\) and \(\mathbf{u}+\mathbf{v}\) (in any number of dimensions). Use the following steps to prove that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\) a. Show that \(|\mathbf{u}+\mathbf{v}|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=|\mathbf{u}|^{2}+\) \(2 \mathbf{u} \cdot \mathbf{v}+|\mathbf{v}|^{2}\) b. Use the Cauchy-Schwarz Inequality to show that \(|\mathbf{u}+\mathbf{v}|^{2} \leq(|\mathbf{u}|+|\mathbf{v}|)^{2}\) c. Conclude that \(|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|\) d. Interpret the Triangle Inequality geometrically in \(\mathbb{R}^{2}\) or \(\mathbb{R}^{3}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free