Chapter 11: Problem 73
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{v}\left(e^{t}\right)$$
Chapter 11: Problem 73
Let \(\mathbf{u}(t)=\left\langle 1, t, t^{2}\right\rangle, \mathbf{v}(t)=\left\langle t^{2},-2 t, 1\right\rangle\) and \(g(t)=2 \sqrt{t}\). Compute the derivatives of the following functions. $$\mathbf{v}\left(e^{t}\right)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the following vectors. The position vector for your final location if you start at the origin and walk along (4,-6) followed by \langle 5,9\rangle
Compute the indefinite integral of the following functions. $$\mathbf{r}(t)=\left\langle t^{4}-3 t, 2 t-1,10\right\rangle$$
Motion on a sphere Prove that \(\mathbf{r}\) describes a curve that lies on the surface of a sphere centered at the origin \(\left(x^{2}+y^{2}+z^{2}=a^{2}\right.\) with \(a \geq 0\) ) if and only if \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal at all points of the curve.
An ant walks due east at a constant speed of \(2 \mathrm{mi} / \mathrm{hr}\) on a sheet of paper that rests on a table. Suddenly, the sheet of paper starts moving southeast at \(\sqrt{2} \mathrm{mi} / \mathrm{hr} .\) Describe the motion of the ant relative to the table.
Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) Consider the circle \(\mathbf{r}(t)=\langle a \cos t, a \sin t\rangle,\) for \(0 \leq t \leq 2 \pi\) where \(a\) is a positive real number. Compute \(\mathbf{r}^{\prime}\) and show that it is orthogonal to \(\mathbf{r}\) for all \(t\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.