Chapter 11: Problem 73
Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Find a general expression for a nonzero vector orthogonal to the plane containing the curve. $$\begin{aligned}\mathbf{r}(t)=&(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j} \\ &+(e \cos t+f \sin t) \mathbf{k},\end{aligned}$$ where \(\langle a, c, e\rangle \times\langle b, d, f\rangle \neq \mathbf{0}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.