Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the following definite integrals. $$\int_{0}^{\pi / 4}\left(\sec ^{2} t \mathbf{i}-2 \cos t \mathbf{j}-\mathbf{k}\right) d t$$

Short Answer

Expert verified
Short Answer: The definite integral of the given vector function is given by the expression \((1\mathbf{i}-\sqrt{2}\mathbf{j}-\frac{\pi}{4}\mathbf{k})\).

Step by step solution

01

Integrate \(\sec^2 t\) with respect to \(\mathbf{i}\)

To perform this integral, recall that the indefinite integral of \(\sec^2 t\) is simply \(\tan t\). We have: $$\int_0^{\pi/4} \sec^2 t \ dt = \left[\tan t\right]_0^{\pi/4} = \tan\frac{\pi}{4} - \tan 0 = 1 - 0 = 1$$
02

Integrate \(-2\cos t\) with respect to \(\mathbf{j}\)

To perform this integral, recall that the indefinite integral of \(\cos t\) is \(\sin t\). We have: $$\int_0^{\pi/4} -2\cos t \ dt = -2\left[\sin t\right]_0^{\pi/4} = -2\left(\sin\frac{\pi}{4} - \sin 0\right) = -2\left(\frac{\sqrt{2}}{2} - 0\right) = -\sqrt{2}$$
03

Integrate \(-1\) with respect to \(\mathbf{k}\)

To perform this integral, recall that the indefinite integral of a constant is the constant multiplied by the variable. We have: $$\int_0^{\pi/4} -1 \ dt = -\left[t\right]_0^{\pi/4} = -\frac{\pi}{4} + 0 = -\frac{\pi}{4}$$
04

Combine the results

Now we combine the results from Steps 1-3 to get the final result: $$\int_{0}^{\pi / 4}\left(\sec ^{2} t \mathbf{i}-2 \cos t \mathbf{j}-\mathbf{k}\right) d t=(1\mathbf{i}-\sqrt{2}\mathbf{j}-\frac{\pi}{4}\mathbf{k})$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Verify that the Cauchy-Schwarz Inequality holds for \(\mathbf{u}=\langle 3,-5,6\rangle\) and \(\mathbf{v}=\langle-8,3,1\rangle\)

Consider the curve \(\mathbf{r}(t)=(a \cos t+b \sin t) \mathbf{i}+(c \cos t+d \sin t) \mathbf{j}+(e \cos t+f \sin t) \mathbf{k}\) where \(a, b, c, d, e,\) and \(f\) are real numbers. It can be shown that this curve lies in a plane. Assuming the curve lies in a plane, show that it is a circle centered at the origin with radius \(R\) provided \(a^{2}+c^{2}+e^{2}=b^{2}+d^{2}+f^{2}=R^{2}\) and \(a b+c d+e f=0\).

Suppose the vector-valued function \(\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\) is smooth on an interval containing the point \(t_{0} .\) The line tangent to \(\mathbf{r}(t)\) at \(t=t_{0}\) is the line parallel to the tangent vector \(\mathbf{r}^{\prime}\left(t_{0}\right)\) that passes through \(\left(f\left(t_{0}\right), g\left(t_{0}\right), h\left(t_{0}\right)\right) .\) For each of the following functions, find an equation of the line tangent to the curve at \(t=t_{0} .\) Choose an orientation for the line that is the same as the direction of \(\mathbf{r}^{\prime}\). $$\mathbf{r}(t)=\langle 2+\cos t, 3+\sin 2 t, t\rangle ; t_{0}=\pi / 2$$

Relationship between \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) Consider the curve \(\mathbf{r}(t)=\langle\sqrt{t}, 1, t\rangle,\) for \(t>0 .\) Find all points on the curve at which \(\mathbf{r}\) and \(\mathbf{r}^{\prime}\) are orthogonal.

Cauchy-Schwarz Inequality The definition \(\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta\) implies that \(|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}|\) (because \(|\cos \theta| \leq 1\) ). This inequality, known as the Cauchy-Schwarz Inequality, holds in any number of dimensions and has many consequences. Algebra inequality Show that $$\left(u_{1}+u_{2}+u_{3}\right)^{2} \leq 3\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)$$ for any real numbers \(u_{1}, u_{2},\) and \(u_{3} .\) (Hint: Use the CauchySchwarz Inequality in three dimensions with \(\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle\) and choose v in the right way.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free